
1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio

click me, I’m
interactive

Table of Contents

Create Seed Model
Create Problem

Choose and Configure Algorithms
Run Analysis
Post-Process Entire Analysis

Overview

OpenStudio

OpenStudio: A DAKOTA DDACE Tutorial

http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio

Overview

This tutorial will discuss how to create and execute a
sampling problem for a building energy model. In this
context, there is a base energy model (or seed model)
and we want to see how the annual energy use of the
building changes when we change specific variables
(wall insulation, lighting power density, etc.).

Instead of manually changing all the variables by hand
and running the energy models individually, we will
use the DAKOTA DDACE Latin Hyper Cube algorithm to
create a number of random perturbations to the seed
model. This will enable us to sample the parameter
space and leverage the OpenStudio RunManager
and AnalysisDriver to automate the creation and
execution of all of the simulations.

This tutorial will go through the example ruby script
SMOff_DDACE_Tutorial.rb and show connections
to the Analysis Workflow depicted on the right. The
perturbations to the OpenStudio Model are made to
a vector of variables that are defined in step 2. This
example perturbs the insulation layer of the external
wall constructions in the seed Model as well as the
lighting power density, plug load density, and north
axis of the building.

It is assumed the user has installed OpenStudio,
Ruby, EnergyPlus 7.0 and DAKOTA as outlined in the
Installation instructions.

http://www.sandia.gov/csit/research/computation/ddace.php
http://dakota.sandia.gov/index.html
http://openstudio.nrel.gov/latest-c-sdk-documentation/runmanager
http://openstudio.nrel.gov/latest-c-sdk-documentation/analysisdriver
https://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/SmOff_DDACE_Tutorial.rb
http://openstudio.nrel.gov/latest-c-sdk-documentation/analysis
openstudio.nrel.gov/latest-c-sdk-documentation/model
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_variable.html
http://openstudio.nrel.gov/installation-instructions
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio

Overview

There are usually several ways to implement the
same variable changes in an OpenStudio Model. The
choice of which method to use depends on many
factors, including how the seed Model is configured
and how easy it is to find the variables of interest. For
example, to find the insulation layer of the external
wall constructions in the seed Model, one could
manually put identifiers in the name field for the
external wall constructions such as ‘Ext Wall’ and then
do a name search; or one could search the Model to
find surfaces that are surface type ‘Wall’ with outside
boundary condition set to ‘Outdoors’ and then find the
constructions associated with those surfaces.

There are two methods for perturbing the insulation
variable in the example script. They are separated by
‘if statements’ on the variable ‘ByName’ so the user
can see different ways of achieving the same end goal.
There are also web links to certain function descriptions
that will take the user to the SDK documentation of
OpenStudio for further information. There are more
details and comments in the C++ version of the SDK
documentation than in the ruby version.

Users are also encouraged to look at other
tutorials such as the online videos at
http://www.youtube.com/user/NRELOpenStudio.

http://openstudio.nrel.gov/latest-c-sdk-documentation/analysis
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/model/html/classopenstudio_1_1model_1_1_construction.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/model/html/classopenstudio_1_1model_1_1_surface.html
http://openstudio.nrel.gov/latest-ruby-sdk-documentation
http://www.youtube.com/user/NRELOpenStudio
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio

Overview: Running the script

The first portion of the example script is an options
parser. Because the script uses a small office
reference building as a seed Model, most of the options
are set to point to a specific reference building. The
options are:
-p Path to the reference buildings main folder
-v Subfolder name of reference buildings vintage
-l Subfolder name of reference buildings location
-w Path to weather file
-n Number of samples to run

This will find the small office located in Chicago that is
a new construction built to ASHRAE standard 90.1-2004
and use the Chicago-Ohare weather file. The DDACE
algorithm will create 4 samples or 4 perturbations to
the seed Model.

A runID is created to give the output folder a unique
name. This is done by getting a unique identifier (UUID)
with the OpenStudio::UUID::create.to_s command
(the .to_s is to make the value a string).

An example command line to run the script is:

>ruby SmOff_DDACE_Tutorial.rb
-p ‘C:\Projects\ReferenceBuildings\BuildingModelsTransitionedToEnergyPlus7_0’

-v ‘new_90.1-2004’

-l ‘Chicago’
-w ‘C:\Projects\ReferenceBuildings\WebsiteFiles\new2004\

 RefBldg_5A_USA_IL_CHICAGO-OHARE\5A_USA_IL_CHICAGO-OHARE.epw’

-n 4

http://www1.eere.energy.gov/buildings/commercial_initiative/reference_buildings.html
openstudio.nrel.gov/latest-ruby-sdk-documentation/utilitiescore
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
1. Create Seed Model

The first step in the Analysis workflow is to create the
seed Model. The goal of this phase is to make the
appropriate modifications to an EnergyPlus .idf file or
an OpenStudio-derived .osm file and prepare it for an
OpenStudio Analysis.

The example script loads a small office reference
building .idf and reverse translates it to an OpenStudio
Model with the LoadAndTranslateIDF function, as can
be seen in the ruby code snippet. A .get is needed
on the LoadAndTranslateIdf function because it is a
Boost::Optional as described in the SDK documentation.
The same method can be used to translate a user-
defined .idf (ie, not a reference building), however the
reverse translator output should be examined to ensure
that all vital objects were translated into the .osm
model file.

The weather file is located with the EpwFile.new and
setWeatherFile functions.

myRefBldgPath = refBldgPath /
 OpenStudio::Path.new(“SmOff”) /
 OpenStudio::Path.new(vintage) /
 OpenStudio::Path.new(location) /
 OpenStudio::Path.new(“in.idf”)

model=OpenStudio::EnergyPlus::loadAndTranslateIdf(myRefBldgPath).get
epwFile = OpenStudio::EpwFile.new(weatherPath)
OpenStudio::Model::WeatherFile::setWeatherFile(model,epwFile)

SmOff_DDACE_Tutorial.rb code snippet

http://openstudio.nrel.gov/latest-c-sdk-documentation/analysis
openstudio.nrel.gov/latest-c-sdk-documentation/energyplus
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/energyplus
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/utilitiesfiletypes
openstudio.nrel.gov/latest-ruby-sdk-documentation/modelsimulation
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio

#find wall constructions by name
OpenStudio::Model::getConstructions(model).each { |c|
 if c.name.get =~ /(.*)Ext Wall(.*)/
 c.layers.each { |m|
 if m.name.get =~ /(.*)Insulation(.*)/
 c.setInsulation(m.to_OpaqueMaterial.get)
 break
 end
 }
 end
}

SmOff_DDACE_Tutorial.rb code snippet

1. Create Seed Model

To perturb the insulation layer, an
OS::StandardsInformation:Construction object needs
to be created in the seed Model so the Analysis
framework can find the perturbable layer of the
Construction ModelObject. One way to distinguish
the insulation layer is to put ‘Ext Wall’ in the name of
the exterior constructions. They can then be found
by looping over all the Model constructions with the
.getConstructions function, do a name matching query
to find the exterior walls, then make the insulation
layer the perturbable layer with the .setInsulation and
.to_OpaqueMaterial functions as shown in the ruby
code snippet. This layer can then be changed by an
Algorithm. The .to_OpaqueMaterial function returns an
OptionalOpaqueMaterial so it requires a .get to access
its value. The .setInsulation function will create an
OS::StandardsInformation:Construction object which
tells OpenStudio which layer is the perturbable layer.

http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/model/html/index.html
openstudio.nrel.gov/latest-ruby-sdk-documentation/modelresources
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelresources
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelresources
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
1. Create Seed Model

The previous loop will find an OS:Construction ModelObject
that has ‘Ext Wall’ in the ‘Name’ attribute, as shown in the
seed.osm code snippet that is created after running the
ruby script ‘SmOff_DDACE_Tutorial.rb’. The associated
OS:StandardsInformation:Construction object for that
OS:Construction is created and the perturbable layer is set.

It is good practice when creating a new variable search
methods (as in the previous example) to open the .osm file
and verify that the correct ModelObjects have been created
and that they are configured correctly.

 OS:Construction,
 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf}, ! Handle

 Mass Non-res Ext Wall, ! Name
 ,! Surface Rendering Name

 {854bfd22-9831-4e6a-bc87-091d3340aeb1}, ! Layer 1
 {25172b70-4f6c-41f8-8c33-33bca0668fa6}, ! Layer 2
 {f6fb6ce2-a60a-4ccc-b854-ccc258635a58}, ! Layer 3

 {871e064d-548e-499c-9a4a-dd1309e3905d}; ! Layer 4

 OS:StandardsInformation:Construction,
 {cb7aac7a-49af-43d3-9297-0701fa87ea53}, ! Handle

 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf},!Construction Name
 , ! Intended Surface Type

 , ! Construction Type
 2, ! Perturbable Layer

 Insulation, ! Perturbable Layer Type
 ;! Other Perturbable Layer Type

Seed.osm code snippet

http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
1. Create Seed Model

Another way to change the insulation layer is to
do a surface search to find ‘Surface Types’ that are
‘Walls’ and have ‘Outdoors ‘ in the ‘Outside Boundary
Condition’ attribute with the .getSurfaces, .surfaceType
and .outsideBoundaryCondition functions. The
constructions associated with those surfaces are then
found using the .construction and to_Construction
functions as illustrated in the ruby code snippet. A
.get is needed since both are functions that return
Optionals. Then insulation layer of that construction
is set to be the perturbable layer by using the
.setInsulation and to_OpaqueMaterial functions.

 #find wall constructions by surface search
 model.getSurfaces.each do |s|
 next if not s.surfaceType == “Wall”
 next if not s.outsideBoundaryCondition == “Outdoors”
 constType = s.construction.get.to_Construction.get
 constType.layers.each { |m|
 if m.name.get =~ /(.*)Insulation(.*)/
 constType.setInsulation(m.to_OpaqueMaterial.get)
 break
 end
 }
 end

SmOff_DDACE_Tutorial.rb code snippet

openstudio.nrel.gov/latest-ruby-sdk-documentation/modelgeometry
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelgeometry
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelgeometry
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelgeometry
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelgeometry
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelresources
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelresources
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
1. Create Seed Model

In the previous example, the OS:Surface ModelObject is
found that has ‘Wall’ in the ‘Surface Type’ attribute as
well as ‘Outdoors’ in the ‘Outside Boundary Conditions’
attribute as seen in the .osm code snippet. Next the
associated OS:Construction object for that surface is found
and then the OS:StandardsInformation:Construction object
for that construction is created and the perturbable layer is
set.

 OS:Surface,
 {8a625d29-bbc4-4026-8634-380209bbd0c8}, ! Handle

 Perimeter_ZN_1_wall_south, ! Name
 Wall, ! Surface Type

 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf},! Construction Name
 {baacfbcf-bb2c-499b-823e-c416c8e51838}, ! Space Name

 Outdoors, ! Outside Boundary Condition
 , ! Outside Boundary Condition Object

….
 OS:Construction,

 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf}, ! Handle
 Mass Non-res Ext Wall, ! Name

 ,! Surface Rendering Name
 {854bfd22-9831-4e6a-bc87-091d3340aeb1}, ! Layer 1

 {25172b70-4f6c-41f8-8c33-33bca0668fa6}, ! Layer 2
 {f6fb6ce2-a60a-4ccc-b854-ccc258635a58}, ! Layer 3

 {871e064d-548e-499c-9a4a-dd1309e3905d}; ! Layer 4

 OS:StandardsInformation:Construction,
 {cb7aac7a-49af-43d3-9297-0701fa87ea53}, ! Handle

 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf}, ! Construction Name
 , ! Intended Surface Type

 , ! Construction Type
 2, ! Perturbable Layer

 Insulation, ! Perturbable Layer Type
 ;! Other Perturbable Layer Type

Seed.osm code snippet

http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
1. Create Seed Model

Now that the seed Model has been created and
properly configured so the variables of interest can be
easily found, the Model can be saved to an OpenStudio
Model file (.osm) with the .save function on the
OpenStudio::Model::Model object. A local variable
called seed can be created with the FileReference.new
function, as can be seen in the ruby code snippet. This
will be used later to create a new Analysis in step 4.

seedPath = runDir / OpenStudio::Path.new(“seed.osm”)
model.save(seedPath)
seed = OpenStudio::FileReference.new(seedPath)

SmOff_DDACE_Tutorial.rb code snippet

http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelcore
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/utilitiescore
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
2. Create Problem

To conduct an OpenStudio Analysis, one must first formulate
a Problem (or an OptimizationProblem, see Optimization).
A Problem consists of a name, an ordered vector of
Variables, and a RunManager::Workflow. Variables are
maintained in a specific order to give users precise control
over how a perturbed building Model is created. For
instance, if one variable adds Lights objects, and another
variable changes the lighting power of all Lights objects,
the order in which these variables are applied matters and
should be explicitly set by the user.

http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_problem.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_optimization_problem.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/index.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_variable.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/runmanager/html/classopenstudio_1_1runmanager_1_1_workflow.html
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio

The specified workflow indicates what sort of
simulation, pre- and post-processing jobs are to take
place after the variables are applied to a seed Model to
create a perturbed Model. Analyses can be conducted
on .osm, .idf, or a mixture of both. In a debugging
phase, one may not be interested in conducting
simulations, so the workflow specification lets the user
specify various translations, whether EnergyPlus is to
be run, etc.

After the seed Model has been configured properly,
a vector of variables that will be perturbed by the
algorithm needs to be created. As illustrated in the
ruby script snippet, the vector of variables to be
perturbed is declared with VariableVector.new and a
filter to find the variables in the Model is declared with
ModelObjectFilterClauseVector.new.

A filter is essentially a query using Model::Relationship
to get related ModelObjects by name. This is done by
defining certain rules that need to be satisfied in order
to make a match.

Set up problem -- wall insulation variable and basic workflow
 variables = OpenStudio::Analysis::VariableVector.new
 filters = OpenStudio::Ruleset::ModelObjectFilterClauseVector.new

SmOff_DDACE_Tutorial.rb code snippet

2. Create Problem

http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysis
openstudio.nrel.gov/latest-ruby-sdk-documentation/ruleset
http://openstudio.nrel.gov/latest-c-sdk-documentation/model
http://openstudio.nrel.gov/latest-c-sdk-documentation/model
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
2. Create Problem

In this example, the filter vector uses rules to
limit itself to the insulation layer of constructions
that have ‘Ext Wall’ in the ‘Name’ attribute.
First, the OpenStudio construction is filtered
using the ModelObjectFilterType.new and
.to_IddObjectType functions with the argument
‘OS:Construction’. A list of IddObjectTypes can be
found in IddEnums.hxx. The name matching is done
using ModelObjectFilterStringAttribute.new and
.RulesetStringPredicate. For a ModelObject to match
this filter, it must have an attribute with the correct
name, and that attribute must be available and satisfy
the predicate applied with testValue as outlined
in the SDK documentation. Once the appropriate
walls have been found, control is passed to the
insulation layer of the matching ModelObject using
ModelObjectFilterRelationship.new.
The ruleset to operate on the continuous variable is
defined with ModelRulesetContinuousVariable.

#setup filter to find insulation layer by name search on construction
 filters.push(OpenStudio::Ruleset::ModelObjectFilterType.new
 (“OS:Construction”.to_IddObjectType))
 filters.push(OpenStudio::Ruleset::ModelObjectFilterStringAttribute.new
 (“name”,”Match”.to_RulesetStringPredicate,”(.*)Ext Wall(.*)”))
 filters.push(OpenStudio::Ruleset::ModelObjectFilterRelationship.new
 (“insulation”))
 continuousVariable=
 OpenStudio::Analysis::ModelRulesetContinuousVariable.new
 (“Wall Insulation R-Value”,filters,”thermalResistance“)

SmOff_DDACE_Tutorial.rb code snippet

http://openstudio.nrel.gov/latest-ruby-sdk-documentation/ruleset
openstudio.nrel.gov/latest-ruby-sdk-documentation/utilitiesidd
http://openstudio.nrel.gov/latest-c-sdk-documentation/utilities-idd
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/ruleset
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/ruleset
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/model/html/index.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/ruleset/html/classopenstudio_1_1ruleset_1_1_model_object_filter_string_attribute.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/ruleset/html/classopenstudio_1_1ruleset_1_1_model_object_filter_relationship.html
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysis
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
2. Create Problem

In the previous example filter, the OS:Construction
ModelObject is found that has ‘Ext Wall’ in the ‘Name’
attribute, as illustrated in the seed Model .osm code
snippet. Next the associated
OS:StandardsInformation:Construction object for that
OS:Construction is found and control is passed to its
perturbable layer.

OS:Construction,
 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf}, ! Handle

 Mass Non-res Ext Wall, ! Name
 ,! Surface Rendering Name

 {854bfd22-9831-4e6a-bc87-091d3340aeb1}, ! Layer 1
 {25172b70-4f6c-41f8-8c33-33bca0668fa6}, ! Layer 2
 {f6fb6ce2-a60a-4ccc-b854-ccc258635a58}, ! Layer 3

 {871e064d-548e-499c-9a4a-dd1309e3905d}; ! Layer 4

OS:StandardsInformation:Construction,
 {cb7aac7a-49af-43d3-9297-0701fa87ea53}, ! Handle

 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf}, ! Construction Name
 , ! Intended Surface Type

 , ! Construction Type
 2, ! Perturbable Layer

 Insulation, ! Perturbable Layer Type
 ;! Other Perturbable Layer Type

Seed.osm code snippet

http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
2. Create Problem

A different method to achieve the same results is to
use rules to find the insulation layer of constructions
that have been found by a surface query. First,
the OpenStudio surface is filtered using the
ModelObjectFilterType.new and .to_IddObjectType
functions with the argument ‘OS:Surface’, as illustrated
in the ruby code snippet. The surface querying is
done using ModelObjectFilterStringAttribute.new and
.RulesetStringPredicate to find OS:Surface objects that
have their ‘Surface Type’ attribute set to ‘Wall’. The
next query is to match surfaces that have their ‘Outside
Boundary condition’ set to ‘Outdoors’.
Once the appropriate surfaces have been found,
control is passed to the construction of the surface and
then to the insulation layer of the construction using
ModelObjectFilterRelationship.new.

#setup filter to find insulation layer by surfacetype
#search and then find construction
 filters.push(OpenStudio::Ruleset::ModelObjectFilterType.new(
 “OS:Surface”.to_IddObjectType))
 filters.push(OpenStudio::Ruleset::ModelObjectFilterStringAttribute.new(
 “surfaceType”,”Match”.to_RulesetStringPredicate,”Wall”))
 filters.push(OpenStudio::Ruleset::ModelObjectFilterStringAttribute.new(
 “outsideBoundaryCondition”,”Match”.to_RulesetStringPredicate,
 “Outdoors”))
filters.push(OpenStudio::Ruleset::ModelObjectFilterRelationship.new(
 “construction”))
filters.push(OpenStudio::Ruleset::ModelObjectFilterRelationship.new(
 “insulation”))

SmOff_DDACE_Tutorial.rb code snippet

http://openstudio.nrel.gov/latest-ruby-sdk-documentation/ruleset
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/utilitiesidd
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/ruleset
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/ruleset
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/ruleset/html/classopenstudio_1_1ruleset_1_1_model_object_filter_relationship.html
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
2. Create Problem

In the previous example, the OS:Surface ModelObject is
found that has ‘Wall’ in the ‘Surface Type’ attribute as well
as ‘Outdoors’ in the ‘Outside Boundary Conditions’ attribute
as illustrated in the seed Model .osm code snippet. Next the
associated OS:Construction object for that surface is found
and then the OS:StandardsInformation:Construction object
for that construction is found and control is passed to its
perturbable layer.

OS:Surface,
 {8a625d29-bbc4-4026-8634-380209bbd0c8}, ! Handle

 Perimeter_ZN_1_wall_south, ! Name
 Wall, ! Surface Type

 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf},! Construction Name
 {baacfbcf-bb2c-499b-823e-c416c8e51838}, ! Space Name

 Outdoors, ! Outside Boundary Condition
 , ! Outside Boundary Condition Object

….
OS:Construction,

 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf}, ! Handle
 Mass Non-res Ext Wall, ! Name

 ,! Surface Rendering Name
 {854bfd22-9831-4e6a-bc87-091d3340aeb1}, ! Layer 1

 {25172b70-4f6c-41f8-8c33-33bca0668fa6}, ! Layer 2
 {f6fb6ce2-a60a-4ccc-b854-ccc258635a58}, ! Layer 3

 {871e064d-548e-499c-9a4a-dd1309e3905d}; ! Layer 4

OS:StandardsInformation:Construction,
 {cb7aac7a-49af-43d3-9297-0701fa87ea53}, ! Handle

 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf}, ! Construction Name
 , ! Intended Surface Type

 , ! Construction Type
 2, ! Perturbable Layer

 Insulation, ! Perturbable Layer Type
 ;! Other Perturbable Layer Type

Seed.osm code snippet

http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
2. Create Problem

Variable bounds and units can also be set. This is helpful in
limiting the search space of the Algorithm defined in step 3.
This is done with the createQuantity, convert, .setMinimum
and .setMaximum functions as illustrated in the ruby script
code snippet. Finally, the continuousVariable and the
associated variable bounds are added to the Variables vector
with ‘variables.push(continuousVariable)’. The variables
vector and the workflow that will be discussed next will be
used to define a Problem.

 ipResistance = OpenStudio::createQuantity(13.0,”ft^2*R*h/Btu”).get
 siResistance = OpenStudio::convert(ipResistance,”SI”.to_UnitSystem).get
 continuousVariable.setMinimum(0)
 continuousVariable.setMaximum(siResistance.value)
 variables.push(continuousVariable)

SmOff_DDACE_Tutorial.rb code snippet

variable 4: north axis
filters = OpenStudio::Ruleset::ModelObjectFilterClauseVector.new
filters.push(OpenStudio::Ruleset::ModelObjectFilterType.
new(“OS:Building”.to_IddObjectType))
contVar = OpenStudio::Analysis::ModelRulesetContinuousVariable.
 new(“North Axis”,filters,”northAxis”)
contVar.setMinimum(-45.0)
contVar.setMaximum(45.0)
variables.push(contVar)

SmOff_DDACE_Tutorial.rb code snippet

The following code snippet illustrates how to change a
continuous variable such as the orientation of the North
Axis of a building. This is done by using filters to find the
OS:Building object and then put bounds on its value.

http://openstudio.nrel.gov/latest-ruby-sdk-documentation/utilitiesunits
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/utilitiesunits
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysis
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysis
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_model_ruleset_continuous_variable.html
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
2. Create Problem

The simulation workflow specifies what should happen
to a Model after a set of variable values are applied
to it. A typical workflow includes converting the
OpenStudio Model to an EnergyPlus IDF, doing the
appropriate pre-processing, running the EnergyPlus IDF,
and then post-processes the results.

As illustrated in the ruby code snippet, the simulation
workflow that each simulation should follow is declared
with Workflow.new, workflow.addjob and .to_JobType.
A list of JobTypes can be found in the OpenStudio::Run
Manager::OPENSTUDIO_ENUM function that is defined
in JobType.hpp.

The path to EnergyPlus that will be used in
the RunManager workflow are found with the
find_energyplus and Path.new functions as illustrated in
the ruby code snippet.

start workflow
 workflow = OpenStudio::Runmanager::Workflow.new
 workflow.addJob(“ModelToIdf”.to_JobType)
 workflow.addJob(“EnergyPlusPreProcess”.to_JobType)
 workflow.addJob(“EnergyPlus”.to_JobType)
 workflow.addJob(“OpenStudioPostProcess”.to_JobType)

SmOff_DDACE_Tutorial.rb code snippet

find EnergyPlus
 ep_hash = OpenStudio::EnergyPlus::find_energyplus(7,0)
 ep_path = OpenStudio::Path.new(ep_hash[:energyplus_exe].to_s)
 ep_parent_path = ep_path.parent_path();

SmOff_DDACE_Tutorial.rb code snippet

http://openstudio.nrel.gov/latest-ruby-sdk-documentation/runmanager
openstudio.nrel.gov/latest-ruby-sdk-documentation/runmanager
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/runmanager
http://openstudio.nrel.gov/latest-c-sdk-documentation/runmanager
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/energyplus
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/utilitiescore
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
2. Create Problem

The Problem class is a container that contains the
variables, functions and the workflow to be executed.

The appropriate paths to the programs needed in
the workflow (e.g., DAKOTA, EnergyPlus) are defined
with workflow.add and ConfigOptions::makeTools
as illustrated in the ruby code snippet. Define a new
Problem based on the variables and the workflow
defined with Problem.new.

workflow.add(OpenStudio::Runmanager::ConfigOptions::makeTools
 (ep_parent_path,
 	 OpenStudio::Path.new,
 	 OpenStudio::Path.new,
 	 $OpenStudio_RubyExeDir,
 	 OpenStudio::Path.new))
 problem = OpenStudio::Analysis::Problem.new
 (runId+”Problem”,variables,workflow)

SmOff_DDACE_Tutorial.rb code snippet

http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_problem.html
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/runmanager
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/runmanager
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysis
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
3. Configure Algorithm

The Algorithm is the numerical method that will be
used to solve the defined Problem. The choice of
Algorithm should be guided by the type of Problem that
is being solved. For example, a parameter study could
use a DDACE sampling algorithm such as LHS, while an
optimization problem could use the sequential search
algorithm. The list of available algorithms can be found in
the OpenStudio::Analysis::OPENSTUDIO_ENUM function
that is defined in DDACEAlgorithmOptions.hpp.

The DDACE Algorithm to be used is defined with
DDACEAlgorithm.new, DDACEAlgorithmOptions.new and
.to_DDACEAlgorithmType as illustrated in the ruby code
snippet. The Algorithm can be configured with options
such as .setSamples.

Set up LHS algorithm
 algOpts = OpenStudio::Analysis::DDACEAlgorithmOptions.new
 		 (“lhs”.to_DDACEAlgorithmType)
 algOpts.setSamples(n)
 algorithm = OpenStudio::Analysis::DDACEAlgorithm.new(algOpts)

SmOff_DDACE_Tutorial.rb code snippet

http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_algorithm.html
http://openstudio.nrel.gov/latest-c-sdk-documentation/analysis
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysis
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysis
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysis
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysis
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
4. Construct and Run Analysis

The Analysis class is a container that contains the
Problem, the Algorithm and the Seed Model. Analysis
works in concert with the Project and AnalysisDriver
sub-projects. In particular, Analysis allows for the in-
memory formulation of problems, which are serialized to
disk using project::ProjectDatabase and related classes.
Problems are solved by analysisdriver::AnalysisDriver,
which coordinates the operations of Analysis, Project,
and RunManager, through the optional application of an
Algorithm. Running an Analysis with an AnalysisDriver
produces DataPoints, each of which provides an interface
to the results of a single RunManager Workflow (one
simulation chain, plus Problem-driven and user-specified
pre- and post- process steps).

As illustrated in the ruby code snippet, the Analysis that
is based on the Problem, the Algorithm and the Seed
Model is defined with Analysis.new. The RunManager
will handle the execution of the workflow and is defined
by RunManager.new.

 # Construct and run analysis
 analysis = OpenStudio::Analysis::Analysis.new(runId + “ Analysis”, 	
		 problem, algorithm, seed)
 runManager = OpenStudio::Runmanager::RunManager.new
 (runDir / OpenStudio::Path.new(“rm.db”),false,false,false)

SmOff_DDACE_Tutorial.rb code snippet

http://openstudio.nrel.gov/latest-c-sdk-documentation/analysis
openstudio.nrel.gov/latest-c-sdk-documentation/project
http://openstudio.nrel.gov/latest-c-sdk-documentation/analysisdriver
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/project/html/classopenstudio_1_1project_1_1_project_database.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysisdriver/html/classopenstudio_1_1analysisdriver_1_1_analysis_driver.html
http://openstudio.nrel.gov/latest-c-sdk-documentation/runmanager
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_algorithm.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_data_point.html
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysis
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/runmanager
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
4. Construct and Run Analysis

Define the project database to store the RunManager
results with ProjectDatabase.new.
Define the AnalysisDriver to oversee the execution of the
Analysis with AnalysisDriver.new as illustrated in the ruby
code snippet.

Define the paths and options for the AnalysisDriver
with AnalysisRunOptions.new. The Analysis is run by
analysisDriver.run as illustrated in the ruby code snippet.

database = OpenStudio::Project::ProjectDatabase.new
 (runDir / OpenStudio::Path.new(“project.osp”), runManager)
analysisDriver = OpenStudio::AnalysisDriver::AnalysisDriver.new(database)

SmOff_DDACE_Tutorial.rb code snippet

rmConfig = runManager.getConfigOptions
nToQueue = rmConfig.getMaxLocalJobs
dakota_hash = OpenStudio::Analysis::find_dakota

runOptions = OpenStudio::AnalysisDriver::AnalysisRunOptions.new
 (OpenStudio::Path.new(runDir),
 OpenStudio::Path.new(dakota_hash[:dakota_exe].to_s),
 nToQueue,
 “NoPause”.to_QueuePausingBehavior,
 OpenStudio::Path.new($OpenStudio_Dir))
currentAnalysis = analysisDriver.run(analysis,runOptions)
analysisDriver.waitForFinished

SmOff_DDACE_Tutorial.rb code snippet

openstudio.nrel.gov/latest-ruby-sdk-documentation/project
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysisdriver
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysisdriver
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysisdriver
http://openstudio.nrel.gov/
http://www.nrel.gov

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
5. Post-Process

After running the script, a directory similar to the one
shown below will be created in the Run Directory. The
directory contains the dataPoint information for each
dataPoint (a unique model with specific perturbations to
the variables defined in step 2).

The OpenStudio ProjectDatabase stores energy simulation
project data for projects with fewer than 10,000 models.
In addition, the ProjectDatabase is a basic serialization
format for a number of OpenStudio classes, and allows for
fast query of high-level information about files and data
points stored as attributes and tags. The ProjectDatabase
is saved to the OSP (OpenStudio Project) file format, which
is a SQLite database. Results can be extracted from the
ProjectDatbase (using classes such as AnalysisRecord and
DataPointRecord) to construct summary tables and graphics.

http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_data_point.html
http://openstudio.nrel.gov/
http://www.nrel.gov
http://openstudio.nrel.gov/latest-c-sdk-documentation/project
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/project/html/classopenstudio_1_1project_1_1_analysis_record.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/project/html/classopenstudio_1_1project_1_1_data_point_record.html

1

2

3

4

5

Create Seed Model

Create Problem

Choose and Configure Algorithms

Run Analysis

Post-Process Entire Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables�
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate UQ Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

OpenStudio
5. Post-Process

Plots and summary tables can be made using the
PostProcess.rb script that lives in the
..\Ruby\openstudio\examples\rubyscripts directory.
Other custom matlab, R, or ruby scripts can also be
created to create .csv files from which plots of the
objective functions of interest can be created.

Questions, comments and feedback about this tutorial
are welcome at the email OpenStudio@nrel.gov or at the
OpenStudio user forum at
http://openstudio.nrel.gov/forums/openstudio-platform

http://openstudio.nrel.gov/
http://www.nrel.gov
http://openstudio.nrel.gov/forums/openstudio-platform

