
OpenStudio Page 1

1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

click me, I’m
interactive

Table of Contents

Create Seed Model
Create Problem
Choose and Algorithm
Run Analysis
Post-Process Analysis

Overview

OpenStudio

OpenStudio:
An Uncertainty Quantification Tutorial

http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio Page 2

1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Overview

This tutorial describes how to create and execute
an uncertainty quantification problem for a possible
building retrofit. In this context, there is a baseline
energy model (or seed model) and we want to see
how sensitive the annual energy use of the building
is to parametric uncertainties when we improve
the wall insulation R value and the air conditioner’s
coefficient of performance (COP). Uncertainty in
current building performance due to imprecise
knowledge of the current value of these performance
parameters are also examined. Together, this gives
the user the opportunity to assess the potential
impacts of COP and R-value variability on annual
energy use for both the building as it is now and as it
might be post-retrofit.

This tutorial walks through several example ruby
scripts, maintains connection with the Analysis
Workflow depicted on the right. We assume the
user has installed OpenStudio 0.9.3 or higher, Ruby,
EnergyPlus 7.1, and DAKOTA as outlined in the
installation instructions located here.

http://openstudio.nrel.gov/installation-instructions
http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio Page 3

1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Overview

The example scripts accompanying this tutorial
investigate the uncertainty in the actual performance
being achieved in an existing building with respect to
wall insulation R-value and DX cooling coil COP. The
uncertainties are modeled with lognormal probability
distributions. The lognormal distribution was chosen
since it is always non-negative (and will thus yield
physical values) and gives a higher probability of
achieving values lower than the baseline model values
(we would expect old equipment to perform worse
than labeled).

Other example scripts evaluate the retrofit cases of
increasing the R-value and/or COP. The uncertainties
caused by installation error, material variability, etc.,
are represented with normal probability distributions
centered at the retrofit rated value.

Web links to certain function descriptions take the user
to the OpenStudio Software Development Kit (SDK)
documentation for further information. There are
more details and comments in the C++ version of the
SDK documentation than in the ruby version. Users are
also encouraged to look at other tutorials such as the
online videos.

http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/ruby_documentation_it/OpenStudioAnalysis/doc/classes/OpenStudio/Analysis/LognormalDistribution.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/ruby_documentation_it/OpenStudioAnalysis/doc/classes/OpenStudio/Analysis/NormalDistribution.html
http://openstudio.nrel.gov/latest-ruby-sdk-documentation
http://www.youtube.com/user/NRELOpenStudio
http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio Page 4

1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Overview: Running the script

The example ruby scripts that accompany this tutorial
have file names that are differentiated by:
 _exist for the existing building
 _retro for the retrofit case
 _R for varying wall insulation
 _COP for varying DX cooling coil COP
 _interactions for varying both R and COP

The first portion of each example script is an options
parser to change runtime parameters. The options are:
 -p Path to the reference buildings main folder
 -w Path to weather file
 -n Number of samples to run

This command line will run the SmOff_R_exist.rb script with the
small office reference building SmOff_golden.osm in the C:\UQ
directory, use the Golden, Colorado weather file and create 20
perturbations to investigate the existing wall insulation case.

During execution, a runID is created to give the output folder
a unique name. This is useful when doing multiple runs of the
same type. An example output folder is:
‘C:\UQ\R_deg_{04c94daa-757f-4dc1-b82a-a5c0df91b78a}’.

An example command line to run the SmOff_R_exist.rb
script is:

>ruby SmOff_R_exist.rb -p ’C:\UQ\SmOff_golden.osm’ -w C:\UQ\
USA_CO_Golden-NREL.724666_TMY3.epw’ -n 20

(command should all be on one line)

http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 5

1. Create Seed Model

To create an uncertainty quantification problem, an
Analysis workflow must be defined in a ruby script,
such as in the examples provided with this tutorial.
The first step in the Analysis workflow is to create the
seed Model. The goal of this phase is to identify an
appropriate starting EnergyPlus .idf file or OpenStudio
.osm file, and prepare it for use in the Analysis.

The UQ scripts provided with this tutorial load a small
office reference building in OpenStudio Model format
with the Model::load function, as shown in the ruby
code snippet below. A .get is needed after the call to
load because the return value is a boost::optional as
described in the SDK documentation.

If the load function fails for any reason teh cal to .get
will cause the script to stop executing and to write an
error message to the screen.

The weather file, which is also passed in as a command
line argument to the script, is opened with EpwFile.new
and added to the model with setWeatherFile.

model=
 OpenStudio::Model::Model::load(OpenStudio::Path.new(seedPath)).get
epwFile = OpenStudio::EpwFile.new(weatherPath)
OpenStudio::Model::WeatherFile::setWeatherFile(model,epwFile)

SmOff_R_exist.rb code snippet

openstudio.nrel.gov/latest-c-sdk-documentation/analysis
http://openstudio.nrel.gov/latest-c-sdk-documentation/model
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/model/html/classopenstudio_1_1model_1_1_model.html#
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/utilitiesfiletypes
openstudio.nrel.gov/latest-ruby-sdk-documentation/modelsimulation
http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 6

1. Create Seed Model

To be able to easily change the R-value of the exterior wall
the insulation layer an
OS::StandardsInformation:Construction object needs to
be created in the seed Model so the Analysis framework
can find the perturbable layer of the Construction
ModelObject. One way to specify the insulation layer
is to loop over the model’s surfaces to find those with
‘Surface Types’ that are ‘Walls’ and have “Outdoors” in the
‘Outside Boundary Condition’ attribute with .getSurfaces,
.surfaceType and .outsideBoundaryCondition. The
constructions associated with those surfaces are then
found using the .construction and to_Construction
functions. A .get is needed because both functions return
optionals. Then the insulation layer of that construction is
found using ruby regular expression matching and set to
be the perturbable layer by using the .setInsulation and
to_OpaqueMaterial functions. This technique only works
as is if all insulation layers have “insulation” in their name
and if each construction of interest contains exactly one
such layer.

 #find wall constructions by surface search
 model.getSurfaces.each do |s|
 next if not s.surfaceType == “Wall”
 next if not s.outsideBoundaryCondition == “Outdoors”
 constType = s.construction.get.to_Construction.get
 constType.layers.each { |m|
 if m.name.get =~ /(.*)Insulation(.*)/
 constType.setInsulation(m.to_OpaqueMaterial.get)
 break
 end
 }
 end

SmOff_R_exist.rb code snippet

http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/model/html/index.html
openstudio.nrel.gov/latest-ruby-sdk-documentation/modelgeometry
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelgeometry
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelgeometry
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelgeometry
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelgeometry
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelresources
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelresources
http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 7

1. Create Seed Model

In the previous ruby code snippet, the OS:Surface
ModelObject has ‘Wall’ in the ‘Surface Type’ attribute as
well as ‘Outdoors’ in the ‘Outside Boundary Conditions’
attribute. An example OS:Surface object satisfying the
search criteria can be seen in the .osm snippet below. Next
the associated OS:Construction object is listed and then the
OS:StandardsInformation:Construction object, which has
it’s perturbable layer set.

 OS:Surface,
 {8a625d29-bbc4-4026-8634-380209bbd0c8}, ! Handle

 Perimeter_ZN_1_wall_south, ! Name
 Wall, ! Surface Type

 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf},! Construction Name
 {baacfbcf-bb2c-499b-823e-c416c8e51838}, ! Space Name

 Outdoors, ! Outside Boundary Condition
 , ! Outside Boundary Condition Object

….
 OS:Construction,

 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf}, ! Handle
 Mass Non-res Ext Wall, ! Name

 ,! Surface Rendering Name
 {854bfd22-9831-4e6a-bc87-091d3340aeb1}, ! Layer 1

 {25172b70-4f6c-41f8-8c33-33bca0668fa6}, ! Layer 2
 {f6fb6ce2-a60a-4ccc-b854-ccc258635a58}, ! Layer 3

 {871e064d-548e-499c-9a4a-dd1309e3905d}; ! Layer 4

 OS:StandardsInformation:Construction,
 {cb7aac7a-49af-43d3-9297-0701fa87ea53}, ! Handle

 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf}, ! Construction Name
 , ! Intended Surface Type

 , ! Construction Type
 2, ! Perturbable Layer

 Insulation, ! Perturbable Layer Type
 ;! Other Perturbable Layer Type

Seed.osm code snippet

http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 8

1. Create Seed Model

Now that the seed Model has been created and
properly configured so the variables of interest can be
easily found and exercised, the Model can be saved
to an OpenStudio Model file (.osm) with the .save
function on the OpenStudio::Model::Model object.
A local variable called seed can be created with the
FileReference.new function, as shown below. This will
be used later to create a new Analysis in Step 4.

model.save(seedPath)
seed = OpenStudio::FileReference.new(seedPath)

SmOff_R_exist.rb code snippet

http://openstudio.nrel.gov/latest-ruby-sdk-documentation/modelcore
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/utilitiescore
http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 9

2. Create Problem

To conduct an OpenStudio Analysis, the user must first
formulate a Problem (or an OptimizationProblem, see
Optimization).
A Problem consists of a name, an ordered vector of
Variables, and a RunManager::Workflow. Variables are
maintained in a specific order to give users precise control
over how a perturbed building Model is created. For
instance, if one variable adds Lights objects, and another
variable changes the lighting power of all Lights objects,
the order in which these variables are applied matters and
should be explicitly set by the user.

http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_problem.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_optimization_problem.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/index.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_variable.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/runmanager/html/classopenstudio_1_1runmanager_1_1_workflow.html
http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 10

The specified workflow defines what type of simulation,
pre, and post-processing jobs take place after the
variables are applied to a seed Model to create a
perturbed Model. Analyses can be conducted on
.osm, .idf, or a combination of both. In a debugging
phase, the user may not be interested in conducting
simulations, so the workflow specification lets the user
specify various translations, whether EnergyPlus is to
be run, etc.

To start creating the required vector of variables
(values for which will be chosen by an algorithm
during runtime) use VariableVector.new. Our
particular variables will be defined with the
help of ModelObjectFilterClause, so also use
ModelObjectFilterClauseVector.new.

A Model Object filter queries Model Objects using
ModelObject::iddObjectType attributes, and
Model::Relationship to select the desired ModelObjects.
Each filter is a rule that needs to be satisfied to make a
match.

Set up problem -- wall insulation variable and basic workflow
 variables = OpenStudio::Analysis::VariableVector.new
 filters = OpenStudio::Ruleset::ModelObjectFilterClauseVector.new

SmOff_R_exist.rb code snippet

2. Create Problem

http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysis
openstudio.nrel.gov/latest-ruby-sdk-documentation/ruleset
http://openstudio.nrel.gov/latest-c-sdk-documentation/model
http://openstudio.nrel.gov/latest-c-sdk-documentation/model
http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 11

2. Create Problem

In the Small Office existing building example, the
filter vector uses rules to find the insulation layer of
constructions that are referenced by a successful surface
query. First, the OpenStudio surface is filtered using
the ModelObjectFilterType.new and .to_IddObjectType
functions with the argument ‘OS:Surface’, as illustrated
in the ruby code snippet. Surface’s are further filtered
with ModelObjectFilterStringAttribute.new and
.RulesetStringPredicate to find OS:Surface objects that
have their ‘Surface Type’ attribute set to ‘Wall’. The
next query matches surfaces that have their ‘Outside
Boundary condition’ set to ‘Outdoors’.
Once the appropriate surfaces are found, control is
passed to the construction of the surface and then
to the insulation layer of the construction using
ModelObjectFilterRelationship.new.

#setup filter to find insulation layer by surfacetype
#search and then find construction
 filters.push(OpenStudio::Ruleset::ModelObjectFilterType.new(
 “OS:Surface”.to_IddObjectType))
 filters.push(OpenStudio::Ruleset::ModelObjectFilterStringAttribute.new(
 “surfaceType”,”Match”.to_RulesetStringPredicate,”Wall”))
 filters.push(OpenStudio::Ruleset::ModelObjectFilterStringAttribute.new(
 “outsideBoundaryCondition”,”Match”.to_RulesetStringPredicate,
 “Outdoors”))
filters.push(OpenStudio::Ruleset::ModelObjectFilterRelationship.new(
 “construction”))
filters.push(OpenStudio::Ruleset::ModelObjectFilterRelationship.new(
 “insulation”))

SmOff_R_exist.rb code snippet

http://openstudio.nrel.gov/latest-ruby-sdk-documentation/ruleset
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/utilitiesidd
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/ruleset
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/ruleset
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/ruleset/html/classopenstudio_1_1ruleset_1_1_model_object_filter_relationship.html
http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 12

2. Create Problem

An OS:Surface ModelObject found with the previous example
is shown below. Notice that its ‘Surface Type’ and ‘Outside
Boundary Condition’ fields match the query. Next the
associated OS:Construction object for that surface is listed
and then the OS:StandardsInformation:Construction object
for that construction. Control is passed to its perturbable
layer.

OS:Surface,
 {8a625d29-bbc4-4026-8634-380209bbd0c8}, ! Handle

 Perimeter_ZN_1_wall_south, ! Name
 Wall, ! Surface Type

 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf},! Construction Name
 {baacfbcf-bb2c-499b-823e-c416c8e51838}, ! Space Name

 Outdoors, ! Outside Boundary Condition
 , ! Outside Boundary Condition Object

….
OS:Construction,

 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf}, ! Handle
 Mass Non-res Ext Wall, ! Name

 ,! Surface Rendering Name
 {854bfd22-9831-4e6a-bc87-091d3340aeb1}, ! Layer 1

 {25172b70-4f6c-41f8-8c33-33bca0668fa6}, ! Layer 2
 {f6fb6ce2-a60a-4ccc-b854-ccc258635a58}, ! Layer 3

 {871e064d-548e-499c-9a4a-dd1309e3905d}; ! Layer 4

OS:StandardsInformation:Construction,
 {cb7aac7a-49af-43d3-9297-0701fa87ea53}, ! Handle

 {ec11e3e9-7b19-470f-a4c6-290c2325d7bf}, ! Construction Name
 , ! Intended Surface Type

 , ! Construction Type
 2, ! Perturbable Layer

 Insulation, ! Perturbable Layer Type
 ;! Other Perturbable Layer Type

Seed.osm code snippet

http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 13

2. Create Problem

A key concept in uncertainty quantification is that input
Variable values are sampled following probability distributions
rather than being selected by some other method (e.g. a
search process for optimization). These input uncertainties are
propagated to the outputs using the appropriate engineering
model/simulation engine.

In this section, input Variables and their distributions are
defined and Variable bounds are set as described. As
illustrated in the ruby script code snippet by specifying a
name, a Continuous Variable using the previously defined
filters and the name of the attributes to be perturbed is
created with the ModelRulesetContinuousVariable.new
function. A lognormal distribution is defined by .setMean,
.setStandardDeviation, .setLowerBound, and .setUpperBound.
The .setUncertaintyDescription function applies the lognormal
distribution to the Continuous Variable which is then added to
the vector of variables with the .push() function.

(Note that the “0.2.1.to_f” syntax avoids a strange and
intermittent bug in Ruby 1.8.7.

continuousVariable =
 OpenStudio::Analysis::ModelRulesetContinuousVariable.new(“Wall
 Insulation Thickness”,filters,”thickness”)
lognormalDist = OpenStudio::Analysis::LognormalDistribution.new
lognormalDist.setMean(mean)
lognormalDist.setStandardDeviation(stdDev)
lognormalDist.setLowerBound(“0.000000001”.to_f)
lognormalDist.setUpperBound(“0.21”.to_f)
continuousVariable.setUncertaintyDescription(lognormalDist)
variables.push(continuousVariable)

SmOff_R_exist.rb code snippet

http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_uncertainty_description.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_model_ruleset_continuous_variable.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_lognormal_distribution.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_lognormal_distribution.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_lognormal_distribution.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_lognormal_distribution.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_model_ruleset_continuous_variable.html#af073eb30a589fd08a5e7ddfaf0dcb334
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_model_ruleset_continuous_variable.html
http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 14

2. Create Problem

The lognormal distribution for the continuousVariable
just defined for the wall insulation thickness is limited to
the upper and lower bounds of [1e-9m,0.21m]. This, with
the material parameters defined in the .osm results in
a lognormal distribution for the effective R-value of the
exterior wall, depicted below. The red line is the mean of the
distribution at 7.28 m2K/w
Next we apply a normal distribution tothe COP of the HVAC
systems DX cooling coils.

http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 15

2. Create Problem

Below, a Continuous Variable is created with the
ModelRulesetContinuousVariable.new function and a filter to find
all “OS:Coil:Cooling:DX:SingleSpeed” objects. The Continuous
Variable is attached to the “Rated COP” attribute of those
objects. A normal distribution is defined by setting the mean
and the standard deviation in NormalDistribution.new. The
bounds on the distribution are set with .setLowerBound and
.setUpperBound. The .setUncertaintyDescription function applies
the normal distribution to the continuousVariable, which is then
added to the vector of variables with .push.

filters = OpenStudio::Ruleset::ModelObjectFilterClauseVector.new
filters.push(OpenStudio::Ruleset::ModelObjectFilterType.new
 (“OS:Coil:Cooling:DX:SingleSpeed”.to_IddObjectType))
continuousVariable =
 OpenStudio::Analysis::ModelRulesetContinuousVariable.new
 (“Rated COP“, filters, “ratedCOP”)
mean = “4.5”.to_f
stdDev = “0.1”.to_f * mean
normalDist =
 OpenStudio::Analysis::NormalDistribution.new(mean.to_f,stdDev.to_f)
normalDist.setLowerBound(mean - 2.5 * stdDev)
normalDist.setUpperBound(mean + 2.5 * stdDev)
continuousVariable.setUncertaintyDescription(normalDist)
variables.push(continuousVariable)

SmOff_R_exist.rb code snippet

http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_normal_distribution.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_normal_distribution.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_normal_distribution.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_model_ruleset_continuous_variable.html
http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 16

2. Create Problem

As just defined the COP follows a normal distribution
centered at 4.5 W/W as depicted in blue in the figure below.
This represents the possible outcomes of cooling system
retrofit scenario. The baseline COP value of 3.666 W/W is
depicted in red. The existing building case in the example
script
‘SmOff_COP_exist.rb’ is the lognormal distribution depicted
in green.

To determine the effects these variations have to the annual
energy use of the small office building, a simulation workflow
needs to be created.

http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 17

2. Create Problem

The simulation workflow specifies what should happen
to a Model after a set of variable values is applied to it.
A typical workflow converts the OpenStudio Model to
an EnergyPlus .idf, does the appropriate pre-processing,
rusn the EnergyPlus .idf, and then runs a post-processes
to extract high-level results.

As illustrated in the ruby code snippet, the simulation
workflow that each simulation should follow is declared
with Workflow.new, workflow.addjob and .to_JobType.
A list of JobTypes can be found in the
JobType OPENSTUDIO_ENUM defined in JobType.hpp.

The RunManager workflow needs to be pointed to
the EnergyPlus executible. This path is found with the
find_energyplus and Path.new functions, as illustrated
below.

start workflow
 workflow = OpenStudio::Runmanager::Workflow.new
 workflow.addJob(“ModelToIdf”.to_JobType)
 workflow.addJob(“EnergyPlusPreProcess”.to_JobType)
 workflow.addJob(“EnergyPlus”.to_JobType)
 workflow.addJob(“OpenStudioPostProcess”.to_JobType)

SmOff_R_exist.rb code snippet

find EnergyPlus
 ep_hash = OpenStudio::EnergyPlus::find_energyplus(7,1)
 ep_path = OpenStudio::Path.new(ep_hash[:energyplus_exe].to_s)
 ep_parent_path = ep_path.parent_path();

SmOff_R_exist.rb code snippet

http://openstudio.nrel.gov/latest-ruby-sdk-documentation/runmanager
openstudio.nrel.gov/latest-ruby-sdk-documentation/runmanager
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/runmanager
http://openstudio.nrel.gov/latest-c-sdk-documentation/runmanager
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/energyplus
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/utilitiescore
http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 18

2. Create Problem

The Problem class is a container that contains the
variables and workflow.

The appropriate paths to the programs needed by the
workflow (e.g., EnergyPlus, Ruby) are defined with
workflow.add and ConfigOptions::makeTools.

The user needs to define a new Problem based on the
variables and the workflow defined with Problem.new.

workflow.add(OpenStudio::Runmanager::ConfigOptions::makeTools
 (ep_parent_path,
 OpenStudio::Path.new,
 OpenStudio::Path.new,
 $OpenStudio_RubyExeDir,
 OpenStudio::Path.new))
 problem = OpenStudio::Analysis::Problem.new
 (runId+”Problem”,variables,workflow)

SmOff_R_exist.rb code snippet

http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_problem.html
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/runmanager
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/runmanager
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysis
http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 19

3. Choose Algorithm

An Algorithm is a numerical method that is going to be
used to solve the defined Problem. The choice of Algorithm
should be guided by the type of Problem that is being
solved. For uncertainty quantification, we need to use an
algorithm that can generate samples over our problem;
like distributors. Here we use Latin Hyper Cube sampling as
provided by the DAKOTA sampling library.

The sampling Algorithm to be used is defined with
SamplingAlgorithm.new, SamplingAlgorithmOptions.new
and .to_SamplingAlgorithmType, as illustrated below The
Algorithm can be configured with options. For this particular
algorithm .setSamples is required. The user can also choose
to .setSeed or clearSeed.

Set up Sampling algorithm
algOpts = OpenStudio::Analysis::SamplingAlgorithmOptions.new
algOpts.setSamples(n)
algOpts.setSampleType(“lhs”.to_SamplingAlgorithmSampleType)
algorithm = OpenStudio::Analysis::SamplingAlgorithm.new(algOpts)

SmOff_R_exist.rb code snippet

http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_algorithm.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/ruby_documentation_it/OpenStudioAnalysis/doc/classes/OpenStudio/Analysis/SamplingAlgorithm.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/ruby_documentation_it/OpenStudioAnalysis/doc/classes/OpenStudio/Analysis/SamplingAlgorithmOptions.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/ruby_documentation_it/OpenStudioAnalysis/doc/classes/OpenStudio/Analysis/SamplingAlgorithmOptions.html#M001895
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/ruby_documentation_it/OpenStudioAnalysis/doc/classes/OpenStudio/Analysis/SamplingAlgorithmOptions.html#M001903
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/ruby_documentation_it/OpenStudioAnalysis/doc/classes/OpenStudio/Analysis/SamplingAlgorithmOptions.html#M001904
http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 20

4. Run Analysis

The Analysis class is a container that contains the
Problem, the Algorithm, and the Seed Model. Analysis
works in concert with the Project and AnalysisDriver
subprojects. In particular, Analysis allows for the
in-memory formulation of problems, which are
serialized to disk using Project::ProjectDatabase and
related classes. Problems are solved by running an
AnalysisDriver::AnalysisDriver, which coordinates the
operations of Analysis, Project, and RunManager,
through the optional application of an Algorithm.
Running an Analysis with an AnalysisDriver produces
DataPoints, each of which provides an interface to the
results of a single set of variable values to the seed
model and then running the simulation workflow.
As illustrated in the ruby code snippet, the Analysis that
is based on the Problem, the Algorithm, and the Seed
Model is defined with Analysis.new. The RunManager
handles the execution of individual workflows and is
defined by RunManager.new.

 # Construct and run analysis
 analysis = OpenStudio::Analysis::Analysis.new(runId + “ Analysis”,
 problem, algorithm, seed)
 runManager = OpenStudio::Runmanager::RunManager.new
 (runDir / OpenStudio::Path.new(“rm.db”),false,false,false)

SmOff_R_exist.rb code snippet

http://openstudio.nrel.gov/latest-c-sdk-documentation/analysis
openstudio.nrel.gov/latest-c-sdk-documentation/project
http://openstudio.nrel.gov/latest-c-sdk-documentation/analysisdriver
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/project/html/classopenstudio_1_1project_1_1_project_database.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysisdriver/html/classopenstudio_1_1analysisdriver_1_1_analysis_driver.html
http://openstudio.nrel.gov/latest-c-sdk-documentation/runmanager
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_algorithm.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_data_point.html
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysis
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/runmanager
http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 21

4. Construct and Run Analysis

A project database is constructed from a RunManager
with ProjectDatabase.new, and an AnalysisDriver is
constructed from that database with AnalysisDriver.new.
This chain of constructors ensures that all the
functionalities we need (run management, data storage,
and coordination) are available at runtime.

The paths to tools and runtime options are specified with
AnalysisDriver with AnalysisRunOptions.new. Finally, run
the Analysis by calling analysisDriver.run.

database = OpenStudio::Project::ProjectDatabase.new
 (runDir / OpenStudio::Path.new(“project.osp”), runManager)
analysisDriver = OpenStudio::AnalysisDriver::AnalysisDriver.new(database)

SmOff_R_exist.rb code snippet

rmConfig = runManager.getConfigOptions
nToQueue = rmConfig.getMaxLocalJobs
dakota_hash = OpenStudio::Analysis::find_dakota

runOptions = OpenStudio::AnalysisDriver::AnalysisRunOptions.new(
 OpenStudio::Path.new(runDir),
 OpenStudio::Path.new($OpenStudio_Dir),
 OpenStudio::Path.new(dakota_hash[:dakota_exe].to_s))
runOptions.setQueueSize(nToQueue)
currentAnalysis = analysisDriver.run(analysis,runOptions)
analysisDriver.waitForFinished

SmOff_R_exist.rb code snippet

openstudio.nrel.gov/latest-ruby-sdk-documentation/project
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysisdriver
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysisdriver
http://openstudio.nrel.gov/latest-ruby-sdk-documentation/analysisdriver
http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 22

5. Post-Process Analysis

After running the script, a directory similar to the one
shown below will be created in the Run Directory. The
directory contains information for each dataPoint (each
of which is a unique model created by the analysis).

The OpenStudio ProjectDatabase stores energy simulation
project data for projects with fewer than 10,000 models.
In addition, the ProjectDatabase is a basic serialization
format for a number of OpenStudio classes, and allows
for fast query of high-level information and data points.
ProjectDatabases are SQLite databases saved in an
OSP (OpenStudio Project) extension. Results can be
extracted from the ProjectDatbase using classes such as
AnalysisRecord and DataPointRecord to construct summary
tables and graphics.

http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/analysis/html/classopenstudio_1_1analysis_1_1_data_point.html
http://openstudio.nrel.gov/
http://www.nrel.gov
http://openstudio.nrel.gov/latest-c-sdk-documentation/project
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/project/html/classopenstudio_1_1project_1_1_analysis_record.html
http://openstudio.nrel.gov/sites/openstudio.nrel.gov/files/nv_data/cpp_documentation_it/project/html/classopenstudio_1_1project_1_1_data_point_record.html

OpenStudio
1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Page 23

5. Post-Process Analysis

The project.osp database, in conjunction with Freeware tools
such as R can be used to analyze the data, and generate plots
such as the ones depicted below.

These particular plots show the results of this example UQ
analysis. The red lines are the seed model values; the blue
areas are the retrofit cases; and the green areas are the
existing building cases. Were these plots to correspond to
real building data and uncertainties, we could conclude that
implementing these retrofits is likely to reduce energy use and
is certain to reduce energy use variability.

http://openstudio.nrel.gov/
http://www.nrel.gov

OpenStudio Page 24

1

2

3

4

5

Create Seed Model

Create Problem

Choose Algorithm

Run Analysis

Post-Process Analysis

Set Location and Utility Rates
Apply a Prescriptive Ruleset

Variables
Continuous and Discrete
Functions
Objectives, Responses, and
Constraints

Simulation Workflow
Including Post-Processing

+ f [X] = ?

Interpolate Uncertainty
Quantification Optimize

Tables Charts Reports QA Check

GJ
0

1

GJ

$

Questions

Questions, comments and feedback about this tutorial
are welcome at the email OpenStudio@nrel.gov or at the
OpenStudio user forum at
http://openstudio.nrel.gov/forums/openstudio-platform

http://openstudio.nrel.gov/
http://www.nrel.gov
http://openstudio.nrel.gov/forums/openstudio-platform

